Copied to
clipboard

G = C23.23D20order 320 = 26·5

2nd non-split extension by C23 of D20 acting via D20/C20=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.23D20, C4○D208C4, (C22×C8)⋊5D5, (C22×C40)⋊4C2, D20.37(C2×C4), C20.411(C2×D4), (C2×C20).403D4, (C2×C4).172D20, (C2×C8).295D10, D205C444C2, C10.16(C4○D8), C22.54(C2×D20), C2.5(D407C2), C20.44D444C2, (C2×C40).356C22, (C2×C20).767C23, C20.172(C22×C4), Dic10.39(C2×C4), (C22×C4).429D10, (C22×C10).139D4, C55(C23.24D4), C4.55(D10⋊C4), C20.113(C22⋊C4), (C2×D20).205C22, C23.21D102C2, C4⋊Dic5.282C22, C22.6(D10⋊C4), (C22×C20).542C22, (C2×Dic10).225C22, C4.71(C2×C4×D5), (C2×C4○D20).5C2, (C2×C4).117(C4×D5), C4.104(C2×C5⋊D4), (C2×C20).408(C2×C4), (C2×C10).157(C2×D4), C10.94(C2×C22⋊C4), C2.25(C2×D10⋊C4), (C2×C4).255(C5⋊D4), (C2×C4).715(C22×D5), (C2×C10).128(C22⋊C4), SmallGroup(320,740)

Series: Derived Chief Lower central Upper central

C1C20 — C23.23D20
C1C5C10C20C2×C20C2×D20C2×C4○D20 — C23.23D20
C5C10C20 — C23.23D20
C1C2×C4C22×C4C22×C8

Generators and relations for C23.23D20
 G = < a,b,c,d,e | a2=b2=c2=1, d20=c, e2=cb=bc, ab=ba, eae-1=ac=ca, ad=da, bd=db, be=eb, cd=dc, ce=ec, ede-1=bd19 >

Subgroups: 622 in 158 conjugacy classes, 63 normal (25 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C22×C4, C2×D4, C2×Q8, C4○D4, Dic5, C20, C20, D10, C2×C10, C2×C10, C2×C10, D4⋊C4, Q8⋊C4, C42⋊C2, C22×C8, C2×C4○D4, C40, Dic10, Dic10, C4×D5, D20, D20, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C22×D5, C22×C10, C23.24D4, C4×Dic5, C4⋊Dic5, C23.D5, C2×C40, C2×C40, C2×Dic10, C2×C4×D5, C2×D20, C4○D20, C4○D20, C2×C5⋊D4, C22×C20, C20.44D4, D205C4, C23.21D10, C22×C40, C2×C4○D20, C23.23D20
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, C22⋊C4, C22×C4, C2×D4, D10, C2×C22⋊C4, C4○D8, C4×D5, D20, C5⋊D4, C22×D5, C23.24D4, D10⋊C4, C2×C4×D5, C2×D20, C2×C5⋊D4, D407C2, C2×D10⋊C4, C23.23D20

Smallest permutation representation of C23.23D20
On 160 points
Generators in S160
(1 64)(2 65)(3 66)(4 67)(5 68)(6 69)(7 70)(8 71)(9 72)(10 73)(11 74)(12 75)(13 76)(14 77)(15 78)(16 79)(17 80)(18 41)(19 42)(20 43)(21 44)(22 45)(23 46)(24 47)(25 48)(26 49)(27 50)(28 51)(29 52)(30 53)(31 54)(32 55)(33 56)(34 57)(35 58)(36 59)(37 60)(38 61)(39 62)(40 63)(81 134)(82 135)(83 136)(84 137)(85 138)(86 139)(87 140)(88 141)(89 142)(90 143)(91 144)(92 145)(93 146)(94 147)(95 148)(96 149)(97 150)(98 151)(99 152)(100 153)(101 154)(102 155)(103 156)(104 157)(105 158)(106 159)(107 160)(108 121)(109 122)(110 123)(111 124)(112 125)(113 126)(114 127)(115 128)(116 129)(117 130)(118 131)(119 132)(120 133)
(1 112)(2 113)(3 114)(4 115)(5 116)(6 117)(7 118)(8 119)(9 120)(10 81)(11 82)(12 83)(13 84)(14 85)(15 86)(16 87)(17 88)(18 89)(19 90)(20 91)(21 92)(22 93)(23 94)(24 95)(25 96)(26 97)(27 98)(28 99)(29 100)(30 101)(31 102)(32 103)(33 104)(34 105)(35 106)(36 107)(37 108)(38 109)(39 110)(40 111)(41 142)(42 143)(43 144)(44 145)(45 146)(46 147)(47 148)(48 149)(49 150)(50 151)(51 152)(52 153)(53 154)(54 155)(55 156)(56 157)(57 158)(58 159)(59 160)(60 121)(61 122)(62 123)(63 124)(64 125)(65 126)(66 127)(67 128)(68 129)(69 130)(70 131)(71 132)(72 133)(73 134)(74 135)(75 136)(76 137)(77 138)(78 139)(79 140)(80 141)
(1 21)(2 22)(3 23)(4 24)(5 25)(6 26)(7 27)(8 28)(9 29)(10 30)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)(41 61)(42 62)(43 63)(44 64)(45 65)(46 66)(47 67)(48 68)(49 69)(50 70)(51 71)(52 72)(53 73)(54 74)(55 75)(56 76)(57 77)(58 78)(59 79)(60 80)(81 101)(82 102)(83 103)(84 104)(85 105)(86 106)(87 107)(88 108)(89 109)(90 110)(91 111)(92 112)(93 113)(94 114)(95 115)(96 116)(97 117)(98 118)(99 119)(100 120)(121 141)(122 142)(123 143)(124 144)(125 145)(126 146)(127 147)(128 148)(129 149)(130 150)(131 151)(132 152)(133 153)(134 154)(135 155)(136 156)(137 157)(138 158)(139 159)(140 160)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 91 92 40)(2 39 93 90)(3 89 94 38)(4 37 95 88)(5 87 96 36)(6 35 97 86)(7 85 98 34)(8 33 99 84)(9 83 100 32)(10 31 101 82)(11 81 102 30)(12 29 103 120)(13 119 104 28)(14 27 105 118)(15 117 106 26)(16 25 107 116)(17 115 108 24)(18 23 109 114)(19 113 110 22)(20 21 111 112)(41 66 122 147)(42 146 123 65)(43 64 124 145)(44 144 125 63)(45 62 126 143)(46 142 127 61)(47 60 128 141)(48 140 129 59)(49 58 130 139)(50 138 131 57)(51 56 132 137)(52 136 133 55)(53 54 134 135)(67 80 148 121)(68 160 149 79)(69 78 150 159)(70 158 151 77)(71 76 152 157)(72 156 153 75)(73 74 154 155)

G:=sub<Sym(160)| (1,64)(2,65)(3,66)(4,67)(5,68)(6,69)(7,70)(8,71)(9,72)(10,73)(11,74)(12,75)(13,76)(14,77)(15,78)(16,79)(17,80)(18,41)(19,42)(20,43)(21,44)(22,45)(23,46)(24,47)(25,48)(26,49)(27,50)(28,51)(29,52)(30,53)(31,54)(32,55)(33,56)(34,57)(35,58)(36,59)(37,60)(38,61)(39,62)(40,63)(81,134)(82,135)(83,136)(84,137)(85,138)(86,139)(87,140)(88,141)(89,142)(90,143)(91,144)(92,145)(93,146)(94,147)(95,148)(96,149)(97,150)(98,151)(99,152)(100,153)(101,154)(102,155)(103,156)(104,157)(105,158)(106,159)(107,160)(108,121)(109,122)(110,123)(111,124)(112,125)(113,126)(114,127)(115,128)(116,129)(117,130)(118,131)(119,132)(120,133), (1,112)(2,113)(3,114)(4,115)(5,116)(6,117)(7,118)(8,119)(9,120)(10,81)(11,82)(12,83)(13,84)(14,85)(15,86)(16,87)(17,88)(18,89)(19,90)(20,91)(21,92)(22,93)(23,94)(24,95)(25,96)(26,97)(27,98)(28,99)(29,100)(30,101)(31,102)(32,103)(33,104)(34,105)(35,106)(36,107)(37,108)(38,109)(39,110)(40,111)(41,142)(42,143)(43,144)(44,145)(45,146)(46,147)(47,148)(48,149)(49,150)(50,151)(51,152)(52,153)(53,154)(54,155)(55,156)(56,157)(57,158)(58,159)(59,160)(60,121)(61,122)(62,123)(63,124)(64,125)(65,126)(66,127)(67,128)(68,129)(69,130)(70,131)(71,132)(72,133)(73,134)(74,135)(75,136)(76,137)(77,138)(78,139)(79,140)(80,141), (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(81,101)(82,102)(83,103)(84,104)(85,105)(86,106)(87,107)(88,108)(89,109)(90,110)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(121,141)(122,142)(123,143)(124,144)(125,145)(126,146)(127,147)(128,148)(129,149)(130,150)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,91,92,40)(2,39,93,90)(3,89,94,38)(4,37,95,88)(5,87,96,36)(6,35,97,86)(7,85,98,34)(8,33,99,84)(9,83,100,32)(10,31,101,82)(11,81,102,30)(12,29,103,120)(13,119,104,28)(14,27,105,118)(15,117,106,26)(16,25,107,116)(17,115,108,24)(18,23,109,114)(19,113,110,22)(20,21,111,112)(41,66,122,147)(42,146,123,65)(43,64,124,145)(44,144,125,63)(45,62,126,143)(46,142,127,61)(47,60,128,141)(48,140,129,59)(49,58,130,139)(50,138,131,57)(51,56,132,137)(52,136,133,55)(53,54,134,135)(67,80,148,121)(68,160,149,79)(69,78,150,159)(70,158,151,77)(71,76,152,157)(72,156,153,75)(73,74,154,155)>;

G:=Group( (1,64)(2,65)(3,66)(4,67)(5,68)(6,69)(7,70)(8,71)(9,72)(10,73)(11,74)(12,75)(13,76)(14,77)(15,78)(16,79)(17,80)(18,41)(19,42)(20,43)(21,44)(22,45)(23,46)(24,47)(25,48)(26,49)(27,50)(28,51)(29,52)(30,53)(31,54)(32,55)(33,56)(34,57)(35,58)(36,59)(37,60)(38,61)(39,62)(40,63)(81,134)(82,135)(83,136)(84,137)(85,138)(86,139)(87,140)(88,141)(89,142)(90,143)(91,144)(92,145)(93,146)(94,147)(95,148)(96,149)(97,150)(98,151)(99,152)(100,153)(101,154)(102,155)(103,156)(104,157)(105,158)(106,159)(107,160)(108,121)(109,122)(110,123)(111,124)(112,125)(113,126)(114,127)(115,128)(116,129)(117,130)(118,131)(119,132)(120,133), (1,112)(2,113)(3,114)(4,115)(5,116)(6,117)(7,118)(8,119)(9,120)(10,81)(11,82)(12,83)(13,84)(14,85)(15,86)(16,87)(17,88)(18,89)(19,90)(20,91)(21,92)(22,93)(23,94)(24,95)(25,96)(26,97)(27,98)(28,99)(29,100)(30,101)(31,102)(32,103)(33,104)(34,105)(35,106)(36,107)(37,108)(38,109)(39,110)(40,111)(41,142)(42,143)(43,144)(44,145)(45,146)(46,147)(47,148)(48,149)(49,150)(50,151)(51,152)(52,153)(53,154)(54,155)(55,156)(56,157)(57,158)(58,159)(59,160)(60,121)(61,122)(62,123)(63,124)(64,125)(65,126)(66,127)(67,128)(68,129)(69,130)(70,131)(71,132)(72,133)(73,134)(74,135)(75,136)(76,137)(77,138)(78,139)(79,140)(80,141), (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(81,101)(82,102)(83,103)(84,104)(85,105)(86,106)(87,107)(88,108)(89,109)(90,110)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(121,141)(122,142)(123,143)(124,144)(125,145)(126,146)(127,147)(128,148)(129,149)(130,150)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,91,92,40)(2,39,93,90)(3,89,94,38)(4,37,95,88)(5,87,96,36)(6,35,97,86)(7,85,98,34)(8,33,99,84)(9,83,100,32)(10,31,101,82)(11,81,102,30)(12,29,103,120)(13,119,104,28)(14,27,105,118)(15,117,106,26)(16,25,107,116)(17,115,108,24)(18,23,109,114)(19,113,110,22)(20,21,111,112)(41,66,122,147)(42,146,123,65)(43,64,124,145)(44,144,125,63)(45,62,126,143)(46,142,127,61)(47,60,128,141)(48,140,129,59)(49,58,130,139)(50,138,131,57)(51,56,132,137)(52,136,133,55)(53,54,134,135)(67,80,148,121)(68,160,149,79)(69,78,150,159)(70,158,151,77)(71,76,152,157)(72,156,153,75)(73,74,154,155) );

G=PermutationGroup([[(1,64),(2,65),(3,66),(4,67),(5,68),(6,69),(7,70),(8,71),(9,72),(10,73),(11,74),(12,75),(13,76),(14,77),(15,78),(16,79),(17,80),(18,41),(19,42),(20,43),(21,44),(22,45),(23,46),(24,47),(25,48),(26,49),(27,50),(28,51),(29,52),(30,53),(31,54),(32,55),(33,56),(34,57),(35,58),(36,59),(37,60),(38,61),(39,62),(40,63),(81,134),(82,135),(83,136),(84,137),(85,138),(86,139),(87,140),(88,141),(89,142),(90,143),(91,144),(92,145),(93,146),(94,147),(95,148),(96,149),(97,150),(98,151),(99,152),(100,153),(101,154),(102,155),(103,156),(104,157),(105,158),(106,159),(107,160),(108,121),(109,122),(110,123),(111,124),(112,125),(113,126),(114,127),(115,128),(116,129),(117,130),(118,131),(119,132),(120,133)], [(1,112),(2,113),(3,114),(4,115),(5,116),(6,117),(7,118),(8,119),(9,120),(10,81),(11,82),(12,83),(13,84),(14,85),(15,86),(16,87),(17,88),(18,89),(19,90),(20,91),(21,92),(22,93),(23,94),(24,95),(25,96),(26,97),(27,98),(28,99),(29,100),(30,101),(31,102),(32,103),(33,104),(34,105),(35,106),(36,107),(37,108),(38,109),(39,110),(40,111),(41,142),(42,143),(43,144),(44,145),(45,146),(46,147),(47,148),(48,149),(49,150),(50,151),(51,152),(52,153),(53,154),(54,155),(55,156),(56,157),(57,158),(58,159),(59,160),(60,121),(61,122),(62,123),(63,124),(64,125),(65,126),(66,127),(67,128),(68,129),(69,130),(70,131),(71,132),(72,133),(73,134),(74,135),(75,136),(76,137),(77,138),(78,139),(79,140),(80,141)], [(1,21),(2,22),(3,23),(4,24),(5,25),(6,26),(7,27),(8,28),(9,29),(10,30),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40),(41,61),(42,62),(43,63),(44,64),(45,65),(46,66),(47,67),(48,68),(49,69),(50,70),(51,71),(52,72),(53,73),(54,74),(55,75),(56,76),(57,77),(58,78),(59,79),(60,80),(81,101),(82,102),(83,103),(84,104),(85,105),(86,106),(87,107),(88,108),(89,109),(90,110),(91,111),(92,112),(93,113),(94,114),(95,115),(96,116),(97,117),(98,118),(99,119),(100,120),(121,141),(122,142),(123,143),(124,144),(125,145),(126,146),(127,147),(128,148),(129,149),(130,150),(131,151),(132,152),(133,153),(134,154),(135,155),(136,156),(137,157),(138,158),(139,159),(140,160)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,91,92,40),(2,39,93,90),(3,89,94,38),(4,37,95,88),(5,87,96,36),(6,35,97,86),(7,85,98,34),(8,33,99,84),(9,83,100,32),(10,31,101,82),(11,81,102,30),(12,29,103,120),(13,119,104,28),(14,27,105,118),(15,117,106,26),(16,25,107,116),(17,115,108,24),(18,23,109,114),(19,113,110,22),(20,21,111,112),(41,66,122,147),(42,146,123,65),(43,64,124,145),(44,144,125,63),(45,62,126,143),(46,142,127,61),(47,60,128,141),(48,140,129,59),(49,58,130,139),(50,138,131,57),(51,56,132,137),(52,136,133,55),(53,54,134,135),(67,80,148,121),(68,160,149,79),(69,78,150,159),(70,158,151,77),(71,76,152,157),(72,156,153,75),(73,74,154,155)]])

92 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G···4L5A5B8A···8H10A···10N20A···20P40A···40AF
order122222224444444···4558···810···1020···2040···40
size111122202011112220···20222···22···22···22···2

92 irreducible representations

dim111111122222222222
type+++++++++++++
imageC1C2C2C2C2C2C4D4D4D5D10D10C4○D8C4×D5D20C5⋊D4D20D407C2
kernelC23.23D20C20.44D4D205C4C23.21D10C22×C40C2×C4○D20C4○D20C2×C20C22×C10C22×C8C2×C8C22×C4C10C2×C4C2×C4C2×C4C23C2
# reps1221118312428848432

Matrix representation of C23.23D20 in GL4(𝔽41) generated by

1000
0100
00236
003518
,
40000
04000
00400
00040
,
1000
0100
00400
00040
,
182400
382100
00829
001218
,
184000
382300
00298
001812
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,23,35,0,0,6,18],[40,0,0,0,0,40,0,0,0,0,40,0,0,0,0,40],[1,0,0,0,0,1,0,0,0,0,40,0,0,0,0,40],[18,38,0,0,24,21,0,0,0,0,8,12,0,0,29,18],[18,38,0,0,40,23,0,0,0,0,29,18,0,0,8,12] >;

C23.23D20 in GAP, Magma, Sage, TeX

C_2^3._{23}D_{20}
% in TeX

G:=Group("C2^3.23D20");
// GroupNames label

G:=SmallGroup(320,740);
// by ID

G=gap.SmallGroup(320,740);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,254,142,1123,136,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^20=c,e^2=c*b=b*c,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*d^19>;
// generators/relations

׿
×
𝔽